近几年来,随着我国经济建设的不断发展,城市控制破裂技术在城市建设和改造中,已发挥出越来越大的作用。但是控制破裂产生的振动、冲击、飞石等对周围造成的影响并没有完全消除。而一些在市区内的旧建筑的拆除由于受破裂安全的限制而不允许使用破裂,而即使允许使用控制破裂,但由于各种各样条件限制这也会给破裂也带来很大的难度。另外像炼油厂及加油站等这些特殊防火环境也不允许使用破裂。那么对上述这些特殊环境下的构筑物除了使用破裂外有没有更安全可靠操作更简单且比较经济的拆除方法?当然有,其实早在上一世纪八十年代日本就研制出了一种静力破碎剂,它完全能够解决这个长期困扰我们的问题。我国虽先后有数家科研单位投入这方面的开发,但由于种种原因却没有得到很好的推广应用。
由于城市地下管道工程穿越的地层水文与工程地质条件的不确定性以及各种破岩设备的自身特点,现行的非爆破破岩方法均有各自的适应性。以TBM为例,其安装施工复杂,初期投入大,且受设备自身限制无法进入小断面施工现场,较适用大型长期隧道工程等;人工风镐破岩效率太低,不利于工程进度;其他如电气设备类破岩方式也存在经济性低、可代替性强等特点。基于上述因素,在实际顶管破岩掘进施工中应根据具体情况,选取适应具体地质条件的最佳破岩方式。
(3)岩体情况。断面内岩体的破碎情况直接取决于钻孔深度的设计。当岩体情况较为完整、无明显裂缝时,每一循环掘进的进尺一般不超过1 m,钻孔深度应为掘进进尺H的1.05倍,即1.05H;为防止岩石掘进后上部岩体(土体)的坍塌,当断面破碎情况较为严重,存在网状裂缝或明显长裂缝时,应缩短每一循环进尺;若掘进中遇孤立的岩石时,钻孔深度为目标破碎体的80%~90%;每掘进一段后续管道跟进顶入,确保掘进面安全性和稳定性。 在试验段进行破岩掘进时发现,当确定掘进进尺H时,其钻孔深度设计为掘进进尺H的1.05倍,即1.05H最为合适。若小于1.05H,会造成破碎不不彻底,导致顶管顶进达不到设计深度;若大于1.05H,则会造成破碎剂浪费。