控制状态的输出一般是通过智能仪表的后向通道,由于控制信号输出较大,不易直接受到干扰,在智能仪表系统中,控制状态的输出被控量的输入和被控量的逻辑处理结果,但是,由于干扰的侵入,会造成被控量输入状态出现偏差、逻辑状态失误,致使控制误差增大,甚至无法正常进行控制,因为可能会造成干扰在不同时间接入导致单片机产生不同计算误差的结果,而实际测量中的压力、温度、流量等变化速度是远低于单片机计算速度,而单片机则空余出非常多的空余时间。
而当电源无法很好净化的时候,智能仪表的信号电缆增加屏蔽层进行接地则是另一个行之有效的办法,由于智能仪表内部采用单片机进行运算处理,而其输入与输出并具有对等的时间关系,对智能仪表中输入、输出通道与单片机系统之间进行光电隔离,是抵抗干扰非常有效的方法,低功耗广域网(LPWAN)出于对场域仪表网络连接到广域网所需的街区聚合器的定位和供电的考虑,某些仪表供应商支持的一些公用事业公司正在使用直接内置WAN功能的仪表设备。
这可能包括使用2G、3G或4G蜂窝技术的机器对机器(M2M)连接,这是许多仪表设计采用模块化设计的原因之一,通信部分与仪表的计量部分分开,通常,每个部分都在自己的电路板上,通信部分通常具有模块化外形,以便公用事业技术人员能够轻松进行现场安装和更换,我们预计第1个使用单无线SoC的仪表将是热量成本分配器,因为它们几乎总是使用wM-Bus通信,并且有简单的计量需求,但简单的燃气表和水表也有可能使用类似的单无线SoC设计。