控制状态的输出一般是通过智能仪表的后向通道,由于控制信号输出较大,不易直接受到干扰,在智能仪表系统中,控制状态的输出被控量的输入和被控量的逻辑处理结果,但是,由于干扰的侵入,会造成被控量输入状态出现偏差、逻辑状态失误,致使控制误差增大,甚至无法正常进行控制,因为可能会造成干扰在不同时间接入导致单片机产生不同计算误差的结果,而实际测量中的压力、温度、流量等变化速度是远低于单片机计算速度,而单片机则空余出非常多的空余时间。
这直接避免了单片机与外部电信号直接接触,从而达到抵抗干扰的目的,由于实际生产中被测量的变化往往非常缓慢,因此使用电压-频率和频率-电压的转换方式是一个比较合适的方法,智能仪表在工业自动化领域具有技术优势和特点,例如其高稳定性、高可靠性、高精度、易维护性,此外,虽然智能仪表的计量部分不太可能永远需要进行软件更新,但不断变化的通信要求,或者更不幸地发现新的安全漏洞,很可能需要确保将软件更新部署到通信子系统。
这可能包括使用2G、3G或4G蜂窝技术的机器对机器(M2M)连接,这是许多仪表设计采用模块化设计的原因之一,通信部分与仪表的计量部分分开,通常,每个部分都在自己的电路板上,通信部分通常具有模块化外形,以便公用事业技术人员能够轻松进行现场安装和更换,我们预计第1个使用单无线SoC的仪表将是热量成本分配器,因为它们几乎总是使用wM-Bus通信,并且有简单的计量需求,但简单的燃气表和水表也有可能使用类似的单无线SoC设计。